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Summary. The usual Born-Oppenheimer approach to a molecule in a magnetic 
field leads to an effective nuclear hamiltonian in which bare nuclei interact with 
the field. We show that the geometric phase, which has been the object of much 
interest in recent years, is capable of correcting this defect, accounting for 
corrections to the molecular charge and magnetic moment due to the electron 
cloud accompanying the nuclei. 
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I. Introduction 

The geometric phase, some of whose effects have been known for some time in 
molecular systems, has recently received wide attention as a universal phe- 
nomenon, manifesting itself in many areas of physical science [1, 2]. In the 
molecular context, the geometric phase is just the change of phase which a 
Born-Oppenheimer electronic wave function may experience when it is smoothly 
carried around a closed path in nuclear configuration space subject to certain 
conditions. 

The case which has been the subject of the most study is that of a 
Born-Oppenheimer electronic function, required to be real, and continuously 
and smoothly evolving while the nuclei are transported around a closed path. 
Since the electronic function is real, the only phase change it can experience is a 
sign change, and this sign change occurs when the path encloses a conical 
intersection of two electronic potential energy surfaces [3, 4]. The resulting 
double-valuedness of the electronic part of the molecular wave function can be 
compensated by a rephasing (meaning that the wave function is no longer real 
but is single-valued), but at the cost of introducing a vector potential term 
(geometric vector potential) into the effective Schrödinger equation for the 
nuclear motion [5]. This has consequences for the energy levels of certain 
molecules, of which the metal trimers have been most extensively studied [6, 7]. 
Since the appearance of the paper by Berry [8], there has been a great deal of 
interest in applications of the phase to various physical situations. 
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For nondegenerate electronic levels, it is a consequence of time reversal 
invariance that there can be no geometric phase change unless the path encloses 
an intersection, and then only the above-mentioned sign change [5]. If an external 
magnetic field is applied, however, the time reversal invariance is broken, and 
there will be a geometric phase, not necessarily a sign change; of, if single-valued- 
ness is required of the electronic wave function, there will be a geometric vector 
potential in the nuclear Schrödinger equation. The geometric vector potential will 
be added to the vector potential of the external field, bringing about a modifica- 
tion of the effect of the field on the nuclear motion. Moreover, the geometric 
vector potential, which would be zero in the absence of the external field, is clearly 
a function of the external field, linear in lowest approximation, and can be thought 
of as induced by the external field. One expects, therefore, that it represents some 
aspect of the magnetic shielding of the nuclei by the electrons. In this paper, we 
analyze some simple aspects of this effect. 

The Born-Oppenheimer treatment of molecular systems in external magnetic 
fields has been considered in some detail by Schmelcher, Cederbaum, and Meyer 
[9, 10]. They showed that the conventional treatment leads to equations of motion 
in which the external field acts on bare nuclei which are completely unshielded by 
the electrons. By rephasing the electronic wave function so that, at least at infinite 
separation, one achieves a consistent gauge, they obtained what they called the 
"screened Born-Oppenheimer approximation," in which this defect is removed. 
As we shall see, this screening of the nuclei by the electrons can also (and 
equivalently) be understood as a manifestation of the geometric vector potential. 
Indeed, it has already been noticed by Cottingham and Hassan [ 11] that an external 
magnetic field induces a geometric vector potential; they carried out an approximate 
calculation for the H2 + ion, obtaining about a 5% reduction in the effective field. 

In this paper, we take up the general theory of the geometric vector potential 
induced by an external magnetic field, and verify that it just reproduces some of 
the effects that, intuitively, one would expect to be present. We first obtain a few 
general relations, and then apply them to the translational and rotational motion 
of molecules. In both cases, the results correspond to intuition: The action of the 
external field on the translational motion of a molecule is determined by the total 
charge of the molecule, not just that of the nuclei. For the rotation of the diatomic, 
the effect is to replace the magnetic moment due to bare nuclei by the total 
magnetic moment of the molecule, including the electrons. In both cases, we limit 
our considerations to terms of first order in the external field. In the treatment 
of the translational motion, we do not require the field to be uniform, but we do 
make this assumption in our treatment of the rotation of the diatomic, as weil as 
the assumption that nuclear centers of mass and charge coincide. For vibrational 
degrees of freedom, the situation is more complicated, as one would expect, and 
we confine ourselves to a few qualitative remarks. 

2. General relations 

The state of a molecular system can evidently always be represented as a 
ker I~(R)> in the Hilbert space of the electronic degrees of freedom which is a 
function of the nuclear coordinates, collectively denoted by R. In the Born- 
Oppenheimer treatment, we approximate [~P(R)) by the product: 

I ~(R) > ~ ]z(R) >~p(R), (1) 
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where ¢(R) is a wave function representing the nuclear motion and ]x(R)) is the 
electronic eigenket, which is normalized and satisfies: 

{~q(R) - U(R) }[z(R) > = 0, (2) 

where/-I(R) is the R-dependent electronic hamiltonian, comprising everything in 
the total molecular hamiltonian except the nuclear kinetic energy, and U(R) is its 
eigenvalue. 

Now consider the contribution of the nuclear degree of freedom x u to the 
kinetic energy, as applied to the approximate state function of Eq. (1). The 
well-known result [5] is: 

h 2 
2M/~ u l  2[Tt>=_27h2 0uOul~g>---- 2M{]Z)O2¢+2[0"Z)0u~O+Ie2z)¢}'  (3) 

where 0 n stands for O/dx u. We obtain an approximate expression for the nuclear 
kinetic energy operator operating on ~k alone by taking the inner product of Eq. 
(3) with the bra <Z [- The result can be represented as follows: 

Z -~-MPu ~ = ~  {(/~u +hfu)2O +h2GuO}, (4) 

where 

( 1 ~uZ/ (5) 
L = z  7 

and 

Gu = _ <• ]aüZ > _ 1 Ouf~ _ f 2 .  (6) 
i 

can be absorbed into the potential energy, and is thus The term involving G u 
relatively uninteresting; fu, however, acts as a vector potentiaMike terrn, leading 
to qualitatively different effects [ 5]. It is called the geometric vector potential. For 
electronic states which are nondegenerate for all R, in the absence of an external 
magnetic field, it is a consequence of time-reversal invariance (or equivalently, of 
the possibility of ehoosing the electronic wave function to be real) that fu = 0. 
Here, however, we are interested in the case of a molecular system in the 
presence of an external magnetic field, for which in general f~ # 0. 

Since the molecular state function [TqR)) must dearly be single-valued, one 
obtains an effective nuclear Schrödinger equation with single-valued boundary 
conditions only if the electronic part [X > is also single-valued as a function of R. 
If we have at our disposal a single-valued lg >, f r  can be evaluated directly from 
Eq. (5). In some cases, however, this is not convenient, so it is useful to study 
some properties of the geometric vector potential. To do this, we define an 
operator ~~ by the relation: 

Ov [Z> = iß,[Z). (7) 

gu is thus an operator in the electronic Hilbert space which reproduces the 
infinitesimal change in the eigenfunction when the nuclear coordinates are 
altered by an infinitesimal amount. Taking a second partial derivative with 
respect to another degree of freedom, we obtain: 

Ou0v IZ> = i(Où£)IX> - £gu IZ>. (8) 
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Taking the second partial derivative also in the reverse order, and requiring 
single-valuedness of I Z), we fnd: 

(aù< -<aù)lz>=o={i(aùê,~ -avê, J + [gu, ~~]}lz> =0. (9) 

We now take the diagonal element of Eq. (9), noting that, for instance, because 
of Eqs. (5) and (7): 

Combining Eq. (10) with Eq. (9), we finally obtain: 

Ouf~ - a~f~ = 1 <zl{gù, g~] [Z>. (11) 
i 

Equation (11) closely resembles the expression for a magnetic field strength 
as the curl of a vector potential, and the right-hand side is frequently called the 
field strength. 

To determine the operators ~~, we differentiate Eq. (2), using Eq. (7) to 
obtain: 

~ u { ( I ~ - U ) [ z ) } = o = ( a ù B - O ù u ) l z ) + i ( I ~ - U ) ~ u l z ) ,  (12) 

or  

i[L, Ill IZ > = (Ou IQ - Ou U) IZ >. (13) 

Both sides of Eq. (13) are entirely oft-diagonal, so the diagonal part of gu is left 
undetermined by Eq. (13). Making the oft-diagonal nature explicit, and also 
making use of the relation between commutator and time derivative, we can 
write an operator equation equivalent to Eq. (13): 

i [~, /1]  = - h~u = (OuH)od, (14) 

where the subscript od stands for oft-diagonal. 
The geometric vector potential fu is a diagonal matrix element of gu, 

according to Eqs. (5) and (7). However, only the oft-diagonal part is determined 
by Eq. (13) or (14); the diagonal part fu must be determined by the single- 
valuedness condition of Eq. (11). Since any diagonal element of gu will in any 
case contribute nothing to the commutator in Eq. (11), for the purpose of 
calculating that commutator we can let gu have any diagonal part we wish. We 
can thus drop the subscript od and simply write: 

i[~ u, fr/] = -- h L = (~u/1), (15) 

with the understanding that the gu thus obtained will not be used to calculate fu 
directly via Eqs. (5) and (7), but only to insert into the commutator on the right 
side of Eq. (11), from which fù will then be determined. 

3. Translational motion of molecule 

In this section, we are concerned only with rigid translation of a molecular 
system in an external magnetic field; the field need not be assumed uniform. We 
will calculate the effect of the geometric vector potential through the first order 
in the external field. 
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In order to concentrate on translational motion only, we treat the molecule 
as rigid, and not allowed to rotate. Its total momentum is: 

1O = ~,/~» (16) 
s 

where the sum goes over all the nuclei. The corresponding kinetic energy is: 

f = 2 ~  (# + F)2, (17) 

where 

F = _ e  y~ ZjA(,'j), (18) 
c j 

e is the electronic charge (taken as a positive quantity), c is the speed of light, Zj 
is the atomic number of nucleus j, and A, of course, is the vector potential. The 
effect of F on the motion is determined only by its curl, given by: 

e 
V x F = - -  ~ Z jB(rs )  , (19) 

B • 7 
where B is the external fiel& This corresponds to an effective magnetic field equal 
to the weighted average of the fields at the locations of all the nuclei. 

According to Eq. (4), there may be an additional term h f  in addition to F, 
which is to be determined by the methods developed in the last section. For the 
gradient of the electronic hamiltonian with respect to the translational coordinate, 
we have in vector notation: 

V »  = }-] VsÆ = Feù, (20) 
J 

where Fen stands for the total electrostatic force exerted on the electrons by the 
nuclei. It is also the total  force exerted on all the electrons minus the magnetic 
force, since the total electrostatic force exerted on the electrons by each other sums 
to zero. We thus have, using Eq. (15): {, }e 

- h f f =  ~~d ~ «+eA(r«) +-c «F'Ô~xB(r«)' (21) 

where the sum now goes over the electrons. Formally integrating Eq. (21), we find: 

l ~ m ~ .  « e ~ l ~ { Æ  e } e ~ .  
= - h  + hc O« = - -h  « + 7 A(r«)  + hec q«' (22) 

where q« is determined by: 

4~ = B(r«) x ~'~. (23) 

We note that, for a uniform field with A = ½B x r, we would have exactly: 

~« = 2A(G ). (24) 

We now proceed to calculate the commutator of two components of ~, 
through the first order in the external field. Taking the x and y components as 
typical examples, we obtain from Eq. (22): 

[~x,~, ]  = ~ + «y ~x , - F c  ( [ < ,  G ]  +Gx,L]) 
(25)  
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where we have omitted commutators of q«x, 0~y because this contribution would 
be second order in the external field. 

The first commutator on the right side of Eq. (25) just gives (e/ihc)B(r«). The 
others are harder because we do not have an explicit expression for 0«, only for 
its time derivative. To obtain these commutators, we make use of the relation: 

d ^ 
[L qy] = ~ [X, 0y] -~ [qy, "~1" (26) 

We are only interested in a diagonal element of this commutator, and the total 
time derivative on the right side of Eq. (26) clearly contributes nothing to this. 
For calculating diagonal elements, therefore, we can make the replacement: 

[Lq,] =[Ôy,'~l = x - { - e A x  - -  z ~ - e  A z  , ~ = . • 
C C tm 

Evaluating the other commutator in the same way and plugging into Eq. (25), 
we find: 

<zl[gx, ê, yllz> = e ihc ~ (Z I»z(ro)Iz> (28) 

Putting this into Eq. (11) and comparing with Eq. (4), we find 

hV x f =  e_c ~ (g Iß(rs)lg)- (29) 

The geometric vector potential thus leads to an additional force just equal to 
the total magnetic force on the electronic charge distribution. In particular, if the 
field is uniform and the molecule neutral, there will be total cancellation. This is, 
of course, more or less what one would expect intuitively; but one must include 
the geometric phase in order to obtain it in a Born-Oppenheimer treatment. 

4. Rotation of diatomic molecule 

In this section, we consider a diatomic molecule, treated as a rigid rotor, in an 
external magnetic field B which is now assumed to be uniform, so that the vector 
potential can be taken as A(r) 1 - - äß  × r. Furthermore, to avoid nonessential 
complications, we confine our attention to diatomics in ~Z states, and for which 
the centers of nuclear mass and charge coincide: Designating mass and atomic 
number of nucleus 1 respectively as M~, Z1, with corresponding notation for 
nucleus 2, we thus require: 

ZIM2 = Z2M,. (30) 

A special case of Eq. (30), of course, is that of a homonuclear diatomic molecule. 
Defining center-of-mass coordinate and momentum vectors R, P, and with r, p 
for relative coordinate and momentum, and making use of Eq. (30), we find for 
the nuclear kinetic energy: 

1 ~p Ze 2 1 Ze# 
B = ~ [ - - ~ c  ( B × R )  +2-~p 2Mc" ×r)  , (31) 

where Z is total charge, M is total mass, and # is the reduced mass for the system 
of two nuclei. The effect of the external field on the center-of-mass contribution 
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can be treated by the methods of the preceding section. Here we concentrate on 
the relative motion, for which the hamiltonian, to lowest order in the external 
field, is: 

t}re I = ~_~ jôz _ 2McZeh B '  £, (32) 

where £ is the nuclear angular momentum in units of h. We also treat the 
molecule as rigidly rotating, suppressing the stretching vibration, so that the first 
term in Eq. (32) is replaced by: 

Bfi2__ h2 172 (33) 
2/~ 2#r 2 ' 

where r is now the fixed distance between the two nuclei. 
We take the z-direction to be that of B, with the x- and y-directions 

orthogonal to z and to each other, but otherwise arbitrary; and we define 
molecule-fixed coordinates ~, {, ~/, with the ~-direction along the internuclear 
axis, making an angle 0 with B; the {-direction in the z~ plane, making an angle 
(0 + (fr/2)) with B; and the q-direction determined by ~ and ~ by the right-hand 
rule. In terms of the angle 0 and a longitude angle th giving the angle between the 
~~ and z x  planes, we have explicitly: 

= zcos  0 + x sin 0 cos th + y sin 0 sin th; 

= - z  sin 0 + x cos 0 cos th + y cos 0 sin th; (34) 

q = - x sin th + y cos th, 

with the inverse transformation: 

z = ( cos 0 - ~ sin 0; 

x = ~ sin 0 cos th + { cos 0 cos th - r/sin th; (35) 

y = ( sin 0 sin th + ~ cos 0 sin th + ~/cos th. 

In terms of the molecule-fixed axes, since there is no nuclear angular 
momentum in the (-direction, we can make the replacement: 

£2 = £~ + £2 (36) 

in Eq. (33). Since angular momentum, like linear momentum, is a differential 
operator, when it is applied to a product state of the form of Eq. (1), the effective 
operator applied to the nuclear function ff is: 

/S2ff = (/~¢ q_f¢)2 _+_ (/~n 'l-fn) 2 --b G, (37) 

where 

Te = ( z l£¢ lz ) ;  fn = <zILùIz>; 
G = <z IL21z> - - f~ _ f 2  _ (/Scf«) -- (£ùfù). (38) 

To first order in the external field, the electronic hamiltonian is given by: 

B =/-}o + 6/-}, (39) 

where/}o is the hamiltonian in the absence of the field and: 

61t  eh B . Ä - ehB 
= 2mc - ~mc  (Ä« cos 0 - Ä« sin 0). (40) 
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In Eq. (40), m is the electronic mass and Ä is total electronic angular momentum 
in units of h. 

Denoting the electronic eigenstate in the absence of the field by I Z0), and 
defining an operator ~ by: 

]Z) = (1 + is~)IZo), (41) 

we obtain the eigenvalue equation: 

(/to + 6/1)(1 + i~)IZo> = (Uo + 6U)(1 + i~)IZo>, (42) 

which in first order reduces to: 

i[~,/~o1 [Zo> = (6It - 6U) IZo>. (43) 

There are two ways in which Eq. (43) simplifies: First, since in a ~S state all 
average values of electronic angular momentum are zero, there is no first-order 
energy correction due to the field, so 6U = 0; second, again because IZ0> is a 1S 
stare, the term in Äc in Eq. (40) just gives zero when inserted into Eq. (43), and 
may therefore be omitted. We can thus determine ~ for our purposes from the 
relation: 

i [ ~ , / t 0 ] = - h ~ -  ehBsinO ^ 
2inc A~. (44) 

Any matrix element of t~ can, of course, be determined from Eq. (44). We are 
interested in evaluating ~ only to first order in the external field, so we are 
entitled to use the zero-order form of Ä¢" 

m 
Ä¢ = ~ ~ (r/~~~ - ~«0~)- (45) 

Integrating Eq. (45), we obtain a formal expression for ~: 

p~ eß sin 0 f 
- 2 h ~ ~  (n«Œ«-~«dr/~). (46) 

L /  

Since the dependence of ~ on the nuclear coordinates is well-defined and 
single-valued, it leads to a single-valued electronic wave function, so we are 
permitted to use the direct method for calculating f¢ and fù. We now proceed to 
do this to first order in the field, using Eqs. (38), (41), and (46). First, from Eqs. 
(38) and (41), we find: 

f« = (Z]£«IZ> = - ( z [ Ä e I z >  

= -<Z0](1 - i~)Ä¢(1 + i~)[Zo> = -i<Zo][Ä¢, ~] Iz0>, (47) 

where we have of course omitted terms of higher than the first order, and have 
also made use of the fact that, since l Z > depends only on coordinates of electrons 
relative to those of nuclei, a differential operator with respect to nuclear 
coordinates affects [Z> in the same way as minus the corresponding electronic 
differential operator. 

Using Eq. (46), we can evaluate the commutator in Eq. (47): 

[Ä,,~] eBsinO ( ä O ) f  
2ihc ~ r/«~-~-~«~-~~~ (r/~d~«-~«d~/~) 

eß sin 0 
- 2 i h ~  ~" (~~ + ~12)" (48) 
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Taking the diagonal element of Eq. (48) and inserting into Eq. (47), we find: 

eB sin 0 1 2 

B = - 2hc ~ ((~ + ~0«) 
o: 

eB sin 0 1 2 
= 2hc (~2 + 50 ), (49) 

where ( )  denotes an average with respect to I)~o) and 02= {2+ q2. Of course, in 
a 1S state the average of r/2 is just half that of 02. 

Proceeding in a similar way, we find for fù: 

eB sin 0 
fn 2hc ~ ({«rl~ > = O. (50) 

Inserting Eq. (49) into Eqs. (33) and (37), we find the following first-order 
geometric correction to the effective nuclear hamiltonian: 

1 2 e h  2 1 2 (~ +re ) *nu¢ _ e h B s i n O ( ( = + r e  )/S e=  B . £ .  (51) 
Hge°m - 2#c r a 2/~c r z 

It is straightforward to verify that the other terms in Eqs. (37), (38) 
contribute nothing in first order. 

Equation (51) is the main result of this section. It accounts for the correction 
to the magnetic moment of the molecule due to the electrons being carried along 
with the nuclei. 

To obtain a better feeling for the meaning of Eq. (51), we consider the 
limiting case in which the nuclear separation r is very large, and the molecule is 
split into two neutral atoms. We note also that rotations of the nuclei are with 
nuclear center of mass held fixed, i.e., they are taken about the center of mass; 
the coordinate ( must therefore be measured relative to the center of mass. In the 
limit of large r, the contribution of 0 is negligible; because of Eq. (30), Z(M1/M) 
of the electrons are located near nucleus 1, with ( = r(M2/M), while Z(M2/M) 
electrons are near nucleus 2, with ( = r(M1/M). We thus have: 

1 2 («2+~Q) (te) 
- Z  + M -  =ZÆ'M r 2 r 2 

Inserting this into Eq. (51), one obtains in this limiting case: 

(52) 

Zeh 
^nuc = - - B . £ ,  (53) Hgeom 2Mc 

which, as we would expect, just cancels the magnetic term in Eq. (32). For finite 
internuclear distances, the cancellation is not exact, but just represents the 
electronic contribution (in Born-Oppenheimer approximation) to the magnetic 
moment of the molecule. 

The geometric phase thus accounts for the intuitively expected correction to 
the molecular magnetic moment due to the electron cloud following the nuclear 
motion. Like the result of the preceding station, this result is hardly surprising, 
but it does not come out of a Born-Oppenheimer treatment without inclusion of 
the geometric phase. 
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5. Discussion 

We have seen that the correct treatment of the geometric vector potential 
induced by an external magnetic field is capable of correcting an annoying defect 
in the usual Born-Oppenheimer approach, namely that the external field appears 
to interact with bare nuclei. With inclusion of the geometric potential, the 
external field "sees" the entire molecule, including the negatively-charged elec- 
tronie cloud. Of course, there will be a correction also to the interaction of 
moleeular vibrational motion with the external field, but this will be more 
difficult to evaluate, since vibrations distort the electronic cloud rather than just 
translating or rotating it. Nevertheless, our general approach should be capable 
of dealing with corrections to the interaction of vibrations with the external field, 
and we hope to take this up in a future publication. One expects modifications 
of magnetic moments associated with vibrations, which will be attributable to the 
electronic cloud partially following the nuclear motion. 

The effect calculated hefe is not to be confused with the actual effect on the 
nuclei of the magnetic field of the electrons [12]. We have not included in our 
hamiltonian any term corresponding to the ability of electrons or nuclei to 
generate or influence magnetic fields. In particular, the correction that we 
ealculate to the magnetic interaction does not appear to apply to the interaction 
of the nuclear spin with the magnetic field. The question of the spin interaction 
is not entirely trivial, however, and we also plan to take it up in a future 
publication. 
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